Global -> Data Handlers
Import data formats
- class tardis_em.utils.load_data.ImportDataFromAmira(src_am: str, src_img: str | None = None)
LOADER FOR AMIRA SPATIAL GRAPH FILES
This class read any .am file and if the spatial graph is recognized it is converted into a numpy array as (N, 4) with class ids and coordinates for XYZ. Also, due to Amira’s design, file properties are encoded only in the image file therefore in order to properly ready spatial graph, class optionally requires amira binary or ASCII image file which contains transformation properties and pixel size. If the image file is not included, the spatial graph is returned without corrections.
- Parameters:
src_am (str) – Amira spatial graph directory.
src_img (str, optional) – Amira binary or ASCII image file directory.
- get_points() ndarray | None
General class function to retrieve point cloud.
- Returns:
- Point cloud as [X, Y, Z] after transformation and
pixel size correction.
- Return type:
np.ndarray
- get_segmented_points() ndarray | None
General class function to retrieve segmented point cloud.
- Returns:
Point cloud as [ID, X, Y, Z].
- Return type:
np.ndarray
- get_labels() dict | None
General class function to read all labels from amira file.
- Returns:
Dictionary with label IDs
- Return type:
dict
- get_image()
General class function to return image file.
- Returns:
Image and if available pixel size data.
- Return type:
np.ndarray, float
- get_pixel_size() float
Catch pixel size value from image.
- Returns:
Pixel size.
- Return type:
float
- tardis_em.utils.load_data.load_tiff(tiff: str) Tuple[ndarray, float]
Function to load any tiff file.
- Parameters:
tiff (str) – Tiff file directory.
- Returns:
Image data and unified pixel size.
- Return type:
np.ndarray, float
- class tardis_em.utils.load_data.MRCHeader(nx, ny, nz, mode, nxstart, nystart, nzstart, mx, my, mz, xlen, ylen, zlen, alpha, beta, gamma, mapc, mapr, maps, amin, amax, amean, ispg, next, creatid, nint, nreal, imodStamp, imodFlags, idtype, lens, nd1, nd2, vd1, vd2, tilt_ox, tilt_oy, tilt_oz, tilt_cx, tilt_cy, tilt_cz, xorg, yorg, zorg, cmap, stamp, rms, nlabl, labels)
- alpha
Alias for field number 13
- amax
Alias for field number 20
- amean
Alias for field number 21
- amin
Alias for field number 19
- beta
Alias for field number 14
- cmap
Alias for field number 44
- creatid
Alias for field number 24
- gamma
Alias for field number 15
- idtype
Alias for field number 29
- imodFlags
Alias for field number 28
- imodStamp
Alias for field number 27
- ispg
Alias for field number 22
- labels
Alias for field number 48
- lens
Alias for field number 30
- mapc
Alias for field number 16
- mapr
Alias for field number 17
- maps
Alias for field number 18
- mode
Alias for field number 3
- mx
Alias for field number 7
- my
Alias for field number 8
- mz
Alias for field number 9
- nd1
Alias for field number 31
- nd2
Alias for field number 32
- next
Alias for field number 23
- nint
Alias for field number 25
- nlabl
Alias for field number 47
- nreal
Alias for field number 26
- nx
Alias for field number 0
- nxstart
Alias for field number 4
- ny
Alias for field number 1
- nystart
Alias for field number 5
- nz
Alias for field number 2
- nzstart
Alias for field number 6
- rms
Alias for field number 46
- stamp
Alias for field number 45
- tilt_cx
Alias for field number 38
- tilt_cy
Alias for field number 39
- tilt_cz
Alias for field number 40
- tilt_ox
Alias for field number 35
- tilt_oy
Alias for field number 36
- tilt_oz
Alias for field number 37
- vd1
Alias for field number 33
- vd2
Alias for field number 34
- xlen
Alias for field number 10
- xorg
Alias for field number 41
- ylen
Alias for field number 11
- yorg
Alias for field number 42
- zlen
Alias for field number 12
- zorg
Alias for field number 43
- tardis_em.utils.load_data.mrc_read_header(mrc: str | bytes | None = None)
Helper function to read MRC header.
- Parameters:
mrc (str) – MRC file directory.
- Returns:
MRC header.
- Return type:
class
- tardis_em.utils.load_data.mrc_write_header(*args) bytes
- tardis_em.utils.load_data.mrc_mode(mode: int, amin: int)
Helper function to decode MRC mode type.
mode int: MRC mode from mrc header. amin int: MRC minimum pixel value.
- Returns:
Mode as np.dtype.
- Return type:
np.dtype
- tardis_em.utils.load_data.load_am(am_file: str)
Function to load Amira binary image data.
- Parameters:
am_file (str) – Amira binary image .am file.
- Returns:
Image file as well images parameters.
- Return type:
np.ndarray, float, float, list
- tardis_em.utils.load_data.load_mrc_file(mrc: str) Tuple[ndarray, float] | Tuple[None, float]
Function to load MRC 2014 file format.
- Parameters:
mrc (str) – MRC file directory.
- Returns:
Image data and pixel size.
- Return type:
np.ndarray, float
- tardis_em.utils.load_data.load_nd2_file(nd2_dir: str, channels=True) Tuple[ndarray, float] | Tuple[None, float]
- tardis_em.utils.load_data.load_ply_scannet(ply: str, downscaling=0, color: str | None = None) Tuple[ndarray, ndarray] | ndarray
Function to read .ply files. :param ply: File directory. :type ply: str :param downscaling: Downscaling point cloud by fixing voxel size defaults to 0.1. :type downscaling: float :param color: Optional color feature defaults to None. :type color: str, optional
- Returns:
- Label point cloud coordinates and optionally RGB value for
each point.
- Return type:
np.ndarray
- tardis_em.utils.load_data.load_ply_partnet(ply, downscaling=0) ndarray
Function to read .ply files. :param ply: File directory. :type ply: str :param downscaling: Downscaling point cloud by fixing voxel size. :type downscaling: float
- Returns:
Labeled point cloud coordinates.
- Return type:
np.ndarray
- tardis_em.utils.load_data.load_txt_s3dis(txt: str, rgb=False, downscaling=0) Tuple[ndarray, ndarray] | ndarray
Function to read .txt Stanford 3D instance scene file.
- Parameters:
txt (str) – File directory.
rgb (bool) – If True return RGB value.
downscaling (float) – Downscaling point cloud by fixing voxel size.
- Returns:
Labeled point cloud coordinates.
- Return type:
np.ndarray
- tardis_em.utils.load_data.load_s3dis_scene(dir_: str, downscaling=0, random_ds=None, rgb=False) Tuple[ndarray, ndarray] | ndarray
Function to read .txt Stanford 3D instance scene files.
- Parameters:
dir (str) – Folder directory with all instances.
downscaling (float) – Downscaling point cloud by fixing voxel size.
random_ds (None, float) – If not None, indicate ration of point to keep.
rgb (bool) – If True, load rgb value.
- Returns:
Labeled point cloud coordinates.
- Return type:
np.ndarray
- tardis_em.utils.load_data.load_image(image: str, normalize=False, px_=True) ndarray | Tuple[ndarray, float]
Quick wrapper for loading image data based on the detected file format.
- Parameters:
image (str) – Image file directory.
normalize (bool) – Rescale histogram to 1% - 99% percentile.
px (bool) – Return px if True
- Returns:
Image array and associated pixel size.
- Return type:
np.ndarray, float
Export data formats
- class tardis_em.utils.export_data.NumpyToAmira(as_point_cloud=False, header: list | None = None)
Builder of the Amira file from the numpy array. Support for 3D only! If 2D data, Z dim build with Z=0
- check_3d(coord: ndarray | None = typing.List) List[ndarray] | ndarray
Check and correct if needed to 3D
- Parameters:
coord (np.ndarray, list) – Coordinate file to check for 3D.
- Returns:
The same or converted to 3D coordinates.
- Return type:
Union[np.ndarray, List[np.ndarray]]
- export_amira(file_dir: str, coords: tuple | list | ~numpy.ndarray = <class 'numpy.ndarray'>, labels: tuple | list | None = None, scores: list | None = None, header: list | None = None)
Save Amira file with all filaments without any labels
- Parameters:
file_dir (str) – Directory where the file should be saved.
coords (np.ndarray, tuple) – 3D coordinate file.
labels (tuple, list, None) – Labels names.
scores (list, None) – List of confidence scores for each instance.
header (list) – Optional header information.
- tardis_em.utils.export_data.to_mrc(data: ndarray, pixel_size: float, file_dir: str, org_header: MRCHeader | None = None, label: List | None = None)
Save MRC image file
- Parameters:
data (np.ndarray) – Image file.
pixel_size (float) – Image original pixel size.
file_dir (str) – Directory where the file should be saved.
org_header (MRCHeader) – Optional original header
label (list) – Optional costume label for header
- tardis_em.utils.export_data.to_am(data: ndarray, pixel_size: float, file_dir: str, header: list | None = None)
Save image to binary Amira image file.
- Parameters:
data (np.ndarray) – Image file.
pixel_size (float) – Image original pixel size.
file_dir (str) – Directory where the file should be saved.
header (list) – Optional header in to form of list(str)
- tardis_em.utils.export_data.to_stl(data: ndarray, file_dir: str)
Save a point cloud as a PLY file.
- Parameters:
data (np.ndarray) – The name of the PLY file to create.
file_dir (str) – Output file location.
Image normalization
- tardis_em.utils.normalization.adaptive_threshold(img: ndarray)
- class tardis_em.utils.normalization.SimpleNormalize
SIMPLE IMAGE NORMALIZATION
Take int8-int32 image file with 0 - 255 value. All image value are spread between 0 - 1.
- class tardis_em.utils.normalization.MinMaxNormalize
IMAGE NORMALIZATION BETWEEN MIN AND MAX VALUE
- class tardis_em.utils.normalization.MeanStdNormalize
IMAGE NORMALIZATION BASED ON MEAN AND STD
- class tardis_em.utils.normalization.RescaleNormalize(clip_range=(2, 98))
NORMALIZE IMAGE VALUE USING Skimage
Rescale intensity with top% and bottom% percentiles as default
- Parameters:
clip_range – Histogram percentiles range crop.
- class tardis_em.utils.normalization.FFTNormalize(method='affine', alpha=900, beta_=1, num_iters=100, sample=1, use_cuda=False)
- static gmm_fit(x, pi=0.5, split=None, alpha=0.5, beta_=0.5, scale=1.0, tol=0.001, num_iters=100, share_var=True, verbose=False)
- norm_fit(x, alpha=900, beta_=1, scale=1.0, num_iters=100, use_cuda=False)