Tuning new CNN module for specific dataset
TARDIS has general training and prediction model build in. With TARDIS you can train your UNet, ResNet, UNet3Plus and our custom build FNet CNN model.
Training TARDIS CNN models
1. Data preparation
TARDIS requires a folder containing training datasets as input. The dataset should include images in formats such as .tif, .mrc, .rec, or .am, and corresponding binary masks/labels in .tif, .mrc, .rec, .am, or .csv formats. The images and mask files must share the same names, with mask files having an additional _mask prefix.
- Tips:
- For .mrc files: Ensure your data is not flipped. You can verify this by loading
your file in Fiji and checking if the image and mask file overlap.
- Normalization: No normalization is required. It is best to use raw image files,
as TARDIS will handle all necessary normalizations.
2. Training
To train a CNN model with TARDIS, use the following command to get detailed information:
tardis_cnn_train --help
To run training. To start training, use the following command:
tardis_cnn_train -dir <path-to-your-dataset; str> -ps <patch_size; int> -cnn <cnn_type; str> -b <batch_size> -cs 3gcl <or 2gcl for 2D>
- TARDIS will create a folder named cnn_model_checkpoint, containing files named *_checkpoint.pth and model_weights.pth.
For re-training the model, use the *_checkpoint.pth file.
For predictions with TARDIS-em, use the model_weights.pth file.
Advance usage:
Below you can find all available arguments you can use with tardis_mt
,
with the explanation for their functionality:
-dir
or--path
: Directory path with all dataset and labels.default: Current command line directory.
type: str
-ps
or--patch_size
: Image size used for prediction.default: 64
type: int
-ms
or--mask_size
: Size of drawn mask in A. If you are using .csv files as labels.default: 150
type: int
-cnn
or--cnn_type
: Type of NN used for training.default: fnet_attn
type: str
options: unet, resunet, unet3plus, big_unet, fnet, fnet_attn
-co
or--cnn_out_channel
: Number of output channels for the NN.default: 1
type: int
-b
or--training_batch_size
: Batch size.default: 25
type: int
-cl
or--cnn_layers
: Number of convolution layer for NN.default: 5
type: int
-cm
or--cnn_scaler
: Convolution multiplayer for CNN layers.default: 32
type: int
-cs
or--cnn_structure
: Define structure of the convolution layer.default: 3gcl
type: str
options: 2 or 3 - dimension in 2D or 3D; c - convolution; g - group normalization; b - batch normalization; r - ReLU; l - LeakyReLU; e - GeLu; p - PReLu
-ck
or--conv_kernel
: Kernel size for 2D or 3D convolution.default: 3
type: int
-cp
or--conv_padding
: Padding size for convolution.default: 1
type: int
-cmpk
or--pool_kernel
: Max_pooling kernel.default: 2
type: int
-l
or--cnn_loss
: Loss function use for training.default: BCELoss
type: str
:guilable:`options:` AdaptiveDiceLoss, BCELoss, WBCELoss, BCEDiceLoss, CELoss, DiceLoss, ClDiceLoss, ClBCELoss, SigmoidFocalLoss, LaplacianEigenmapsLoss, BCEMSELoss
-lr
or--loss_lr_rate
: Learning rate for NN.default: 0.0005
type: float
-lrs
or--lr_rate_schedule
: If True learning rate scheduler is used.default: False
type: bool
-dv
or--device
: Define which device use for training:default: 0
type: str
:guilable:`options:` gpu - Use ID 0 gpus; cpu - Usa CPU; mps - Apple silicon; 0-9 - specified gpu device id to use
-w
or--warmup
: Number of warmup steps.default: 100
type: int
-e
or--epochs
: Number of epoches.default: 10000
type: int
-es
or--early_stop
: Number of epoches without improvement after which early stop is initiated. Default should is 10% of the total number of epochs.default: 1000
type: int
-cch
or--cnn_checkpoint
: If indicated, dir to training checkpoint to reinitialized training.default: None
type: str
-dp
or--dropout_rate
: If indicated, value of dropout for CNN.default: 0.5
type: float
3. Pre-train model
To run re-training:
tardis_cnn_train -dir <path-to-your-dataset; str> -ps <patch_size; int> -cnn <cnn_type; str> -b <batch_size> -cch <checkpoint.pth_file_dir>
3. Predict with train model
To predict images with your newly train model, you can use the following command:
tardis_predict --help
tardis_predict -dir <dir to folder of file to predict> -ch <model_weight.pth_directory> -ps <patch_size> -out <output_format> mrc|tif|rec|am -rt True -ct <CNN_threshold> -dv 0